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Abstract
We analyse lowering of the kinetic energy in doped antiferromagnets at the
transition to the superconducting state. Measurements of optical conductivity
indicate that such unconventional behaviour takes place in underdoped
Bi-2212. We argue that the definition of the operator representing the kinetic
energy is determined by experimental conditions. The thermodynamic average
of that operator is related to the integrated spectral weight of the optical
conductivity and thus depends on the cut-off frequency limiting that integral.
If the upper limit of the integral lies below the charge transfer gap the spectral
weight represents the average of the hopping term in the space restricted to
the energy range below the gap. We show that the kinetic energy is indeed
lowered at the superconducting transition in the t–J model (t JM), which is
an effective model defined in the restricted space. That result is in agreement
with experimental observations and may be attributed to the formation of spin
polarons and the change of roles which are played by the kinetic and the potential
energy in the t JM and in some effective model for spin polarons. The total
spectral weight represents the kinetic energy in a model defined in a broader
space if the upper limit in the integral of the optical conductivity is set above
the gap. We demonstrate that the kinetic energy in the Hubbard model is
also lowered in the superconducting state. That result does not agree with
experimental observations, indicating that the spectral weight is conserved for
all temperatures if the upper limit of the integral is set above the charge transfer
gap. This discrepancy suggests that a single band model is not capable of
describing in some respects the physics of excitations across the gap.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Recent experiments on underdoped Bi-2212 samples seem to indicate that the kinetic energy
of the system is lowered when the material becomes superconducting [1–3]. This is in
sharp contrast to BCS theory [4] which predicts an increase in the kinetic energy when
superconductivity sets in. The reason for the lowering of the kinetic energy in the BCS model
is very simple. When Cooper pairs are formed they condense in a state with zero pairing
momentum. This causes a broadening of the momentum distribution 〈nk,σ 〉 by an amount
of the order of the order parameter �. The broadening of the Fermi distribution implies an
increase in kinetic energy which is, of course, overcompensated by the potential energy gain
in the superconducting state. Experimental measurements concerning the kinetic energy are
obtained via a measurement of the temperature and frequency-dependent real part of the optical
conductivity σ1(ω, T ). There exists a relation between the optical conductivity and the kinetic
energy of a model lattice Hamiltonian with a nearest-neighbour hopping term [5–8], i.e.

Tδ = −
∑

i

tδ[c†
i,σ ci+δ,σ + H.c.]. (1)

Here c†
i,σ (ci,σ ) creates (destroys) an electron with spin σ on the lattice site i and δ is a direction,

e.g. in the square lattice. The relation between σ1(ω, T ) and Tδ is given by∫ �µ

0
σ1δ(ω, T ) dω = π2a2

δ e2

2h̄2�
〈−Tδ〉. (2)

Here aδ is a lattice constant in the direction of δ and � is the volume. The expectation value
〈−Tδ〉 refers to a thermodynamic average with respect to the model system under consideration.
The upper cut-off �µ excludes transitions to higher energy states which are not described by
the model Hamiltonian. We want to draw attention to the following: when �µ is chosen in an
experiment, e.g. by the experimentally available frequency range, then 〈−Tδ〉 is determined for
a model Hamiltonian which is suitable for describing properly the energy excitations within
the same frequency range.

As pointed out above, experiments in the normal and superconducting states of Bi-2212
were performed by several groups. They determined the evolution with temperature of spectral
weight

W (t,�µ) =
∫ �µ

0
σ1(ω, T ) dω. (3)

In conventional superconductors one finds that for all �µ � 4�

W (T > Tc,�µ � 4�) = W (T < Tc,�µ � 4�), (4)

indicating that σ1(ω > 4�, T ) does not change when the system becomes superconducting.
For smaller frequencies σ1(ω, T ) is depleted in the superconducting state. The depletion is
compensated for by a contribution of the form Aδ(ω), which is caused by the condensate [9, 10].
In contrast to the above it was found that, in underdoped Bi-2212, one has to go up to 2 eV
(instead of 4�) in order that an equivalent of equation (4) holds, i.e.

W (T > Tc,�µ � 2 eV) = W (T < Tc,�µ � 2 eV). (5)

This shows that states up to the charge-transfer gap contribute to the formation of the superfluid.
When, for example, in the experiment �µ is chosen to be �0.125 eV, which is of the order of
4� and also of the order of the exchange integral J in the cuprates, it is found that [3]

W (T > Tc,�µ � 0.125 eV) < W (T < Tc,�µ � 0.125 eV). (6)
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The inequality is still very pronounced for �µ � 0.7 eV. Therefore, according to equation (2)
the kinetic energy decreases in a model when the system becomes superconducting. It is
important to realize that this conclusion is correct only if the model Hamiltonian describes
the excitations just in the range up to �µ. If it also describes much higher energy excitations
the kinetic energy 〈Tδ〉 also contains contributions from the latter. In that case the left-hand
side of equation (2) is no longer the measure of the kinetic energy of the model Hamiltonian.
Rather, it describes the kinetic energy of an effective Hamiltonian obtained by a reduction to
the energy range below �µ.

The model Hamiltonian conventionally used for the cuprates is that of the t–J model
(t JM). Its energy scale is given by the hopping matrix element t and is much smaller than the
one of the Hubbard model, i.e. U . Here the on-site Coulomb integral U defines the scale of
charge excitations. In the limit of low doping the energy scale of the t JM is reduced even further
and is given by J . ARPES measurements for undoped and underdoped oxychlorides [12, 11]
and several theoretical analyses [13] provide evidence for that reduction. Measured values are
J � 0.125 eV, t � 0.4 eV and U � 2 eV. Therefore the experiments with a cut-off �µ in
the energy range 0.125 eV � J � �µ � t � 0.4 eV should be used to draw conclusions
for changes with temperature of the kinetic energy within the t JM, rather than within the
Hubbard, model.

The kinetic energy, which is defined by the hopping energy in a given model, is not the
same as the kinetic energy defined in the same way in a model which has been obtained from
that model by means of a unitary transformation and is valid for a narrower range of low energy
excitations. In the next section we will discuss that relation for the example on the HM and
the t JM for which the values of the hopping energy are different. We will also show that
the cut-off frequency �µ, which appears in the total spectral weight W (T,�µ), determines
the microscopic model, the kinetic of which is directly related to W (T,�µ) by means of the
formula (2). The central issue of this paper is the demonstration that the change of kinetic
energy of the t JM at the transition to the SC state is in agreement with the experimentally
measured change of W (T,�µ), while for the HM the change of the kinetic energy disagrees
with the change of W (T,�µ). That statement suggests that, despite the relation between the
HM and the t JM which may be obtained from the former model by means of the unitary
transformation, the t JM provides the correct description of low energy excitations in cuprates
in the energy range below the gap, while the behaviour of the HM, which also describes
excitations across the gap,does not agree with the experimental observations made for cuprates.

Except for some numerical work [14–16] it is presently not possible to treat the differences
between the normal and superconducting states within the t JM. But this can be done within
a simplified version of it, which is the spin-polaron model (SPM). It describes the motion of
a hole moving in a system with short-range AF correlations. One may also consider a spin
polaron as a hole surrounded by a spin bag [17]. This assumed that the correlation length
of this short-range order is longer than the radius of the polaron so that the background can
be simply described by a Néel ordered state with some quantum fluctuations. In contrast to
the t JM the spin polaron model neglects excitations of the spin bag. The propagation of the
spin polaron determines the quasiparticle energy dispersion. This dispersion is of the order
of J . The incoherent motion takes place at the scale of t . Processes related to incoherent
hopping are incomplete in the SPM as compared with the t JM because of the neglect of
the spin bag excitations. The energy of incoherent motion determines the eigenenergy of a
hole trapped in a spin bag and sets a level from which the quasiparticle energy dispersion is
measured. That level is of the order of t . We may consider the SPM as a representation of
the t JM within the restricted basis of spin-polaron states. The kinetic energy of the t JM
contributes predominantly to the interaction in the spin polaron model and, to a lesser extent,
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to the quasiparticle motion. Two quasiparticles attract each other and can form a bound state,
i.e. a Cooper pair. This allows for a description of the superconducting state. We will show that
the transition to the superconducting state results in an increase of the kinetic energy within
the spin-polaron model. This kinetic energy is of the order of J . But when we determine the
kinetic energy of the t JM we find indeed that it decreases below Tc. This resolves an apparent
puzzle pointed out at the beginning of the introduction. We shall also calculate the kinetic
energy due to superconductivity within the Hubbard model. We find again that it decreases in
the SC state.

The HM reduces to the t JM in the limit of strong correlations. The exchange energy in the
t JM represents the double occupancies of sites caused by the kinetic term in the HM [18, 19].
Thus, the kinetic energy defined as a thermodynamic average of the hopping term is not
identical in the t JM and in the HM. Nevertheless, the ambiguity in the definition of kinetic
energy is, to some extent, spurious. As we have already mentioned, the cut-off frequency
�µ applied to the integral (3) of the measured optical conductivity determines which model
we should choose in order to compare the kinetic energy with the spectral weight W (t,�µ).
The lowering of the kinetic energy in the HM in the superconducting state contradicts the
experimental observation that the integral of the optical conductivity W (t,�µ) is conserved at
the superconducting transition if the upper limit in that integral �µ is set above the gap energy.
Thus, we shall conclude that a single band model, such as the HM, is not capable of describing
correctly excitations across the gap. But an effective model, such as the t JM, captures the
essential physics of low-energy excitations.

2. Kinetic energy in the tJM and in the HM

In this section we will find the answer to the following question: depending on the value of the
cut-off frequency �µ, which is the appropriate model in that the kinetic energy is related to the
weight W (t,�µ)? First we separate the states above the gap from the states below the gap by
means of a unitary transformation [20]. We will perform that transformation for the example
of the HM which seems to be the conceptually simplest model for describing processes in the
wide energy range including the charge transfer energy U :

HHM = HhHM + HU (7)

HhHM = −t
∑

〈i, j〉,σ
(c†

i,σ c j,σ + h.c.) (8)

HU = U
∑

i

ni,↑ni,↓. (9)

Here HhHM represents hopping in the HM between nearest neighbour sites i, j and defines the
kinetic energy for that model. HU refers to the on-site Coulomb repulsion. The t JM is derived
from the HM by means of a unitary transformation Û which separates the lower Hubbard band
lying below the gap from the upper Hubbard band lying above the gap [21]. Û transforms an
operator Ô into P̂Û † ÔÛ P̂ . We have additionally applied the projector P̂ which restricts the
action of the transformed operator to the low-energy space, which consists of states without
doubly occupied sites. The expressions for the transformed kinetic and Coulomb energies in
the HM have been thoughtfully analysed by Eskes et al [6]. The hopping term in the HM
transforms into

H (t J )

hHM = PÛ † HhHMÛ P = −t
∑
i,δ,σ

c̃†
i+δ,σ c̃i,σ + J

∑
i,δ,δ′ ,σ

(
Si+δ Si − ñi+δñi

4

)
c̃†

i+δ,σ c̃i+δ′,σ . (10)
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where c̃i,σ = ci,σ (1 − ni,σ̄ ), J = 4t2/U . If we neglect the correlated hopping between second
and third NN in the second term, H (t J )

hHM is given by

H (t J )

hHM = −t
∑

〈i, j〉,σ
(c̃†

i,σ c̃ j,σ + H.c.) + 2J
∑
〈i, j〉

(
Si S j − ñi ñ j

4

)
. (11)

It consists of the hopping term in the t JM, Hht J plus twice the exchange term HJ , i.e. H (t J )

hHM =
Hht J + 2HJ . For the transformed interaction term we may write

H (t J )
U = PÛ † HUÛ P = − J

2

∑
i,δ,δ′ ,σ

(
Si+δ Si − ñi+δ ñi

4

)
c̃†

i+δ,σ c̃i+δ′,σ , (12)

and

H (t J )

U = −J
∑
〈i, j〉

(
Si S j − ñi ñ j

4

)
. (13)

The operator H (t J )
U represents the interaction in the HM and equals the exchange term in the

t JM with the negative sign, H (t J )

U = −HJ . As seen in (13), that operator favours ferromagnetic
correlations. This effect is easy to understand: when spins at NN sites point in the same
direction the hopping term cannot create a virtual state with a doubly occupied site. If spins at
NN sites are antiparallel they can virtually hop on top of each other. This process gives rise to a
lowering of the kinetic energy and an antiparallel configuration is favoured by the transformed
hopping term in the HM as may be seen in (11). By comparing (11) with (13) one can see that
the exchange term in the t JM favours AF correlations.

The Hamiltonian of the t JM in the space with no doubly occupied sites represents the
full Hamiltonian of the HM in the low-energy regime, i.e. Ht J = PÛ † HHMÛ P . The t JM
may be expressed in terms of the sums Ht J = H (t J )

hHM + H (t J )
U or Ht J = Hht J + HJ . Both

the transformed Hamiltonian of the HM, Ht J , and the transformed kinetic energy operator
H (t J )

hHM contain terms related to the hopping (Hht J ) and the exchange energy (HJ ) in the t JM.
Therefore, if the system manages somehow to lower simultaneously the hopping energy and
the exchange energy in the t JM, lowering of the total and kinetic energies defined for the HM
is an obvious consequence.

We will decide now on the proper definition of the kinetic energy under given experimental
conditions. We perform the analysis for the HM, but the results of this discussion are
independent of which model is relevant to the energy range covering charge excitations. The
real part of the optical conductivity for the light polarized in the direction η is [6, 7, 22]

σ1,η(ω) = π

V Z

∑
n,m

e−βEn

Em − En
〈n|Jη|m〉〈m|Jη|n〉(δ(ω − (Em − En)) + δ(ω + (Em − En))),

(14)

where Jη is the current operator in the direction η and En is the energy of the eigenstate |n〉.
The relation (2) between the integral of the real part of the optical conductivity and the average
of the kinetic energy in the HM model is based on some commutation relations between the
polarization operator, �P = ∑

i
�Ri ni , the current operator �J and the hopping term HhHM, i.e.

�J ∝ [HhHM, �P], (15)

HhHM ∝ [ �J , �P]. (16)

The second relation is true for models with hopping to NN sites only.
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We divide the optical conductivity (14) into four terms with contributions to the sums
over eigenstates |n〉L with low energies E (L)

n below the charge excitation energy U and with
contributions to the sums over eigenstates |n〉H with energies E (H)

n above U :

(δσ1,η(ω))1 ∝
∑
n,m

e−βE (L)
n

E (L)
m − E (L)

n
L〈n|Jη|m〉LL〈m|Jη|n〉L

×(δ(ω − (E (L)
m − E (L)

n )) + δ(ω + (E (L)
m − E (L)

n ))),

(δσ1,η(ω))2 ∝
∑
n,m

e−βE (L)
n

E (H)
m − E (L)

n
L〈n|Jη|m〉HH〈m|Jη|n〉L

×(δ(ω − (E (H)
m − E (L)

n )) + δ(ω + (E (H)
m − E (L)

n ))),

(δσ1,η(ω))3 ∝
∑
n,m

e−βE (H)
n

E (L)
m − E (H)

n
H〈n|Jη|m〉LL〈m|Jη|n〉H

×(δ(ω − (E (L)
m − E (H)

n )) + δ(ω + (E (L)
m − E (H)

n ))),

(δσ1,η(ω))4 ∝
∑
n,m

e−βE (H)
n

E (H)
m − E (H)

n
H〈n|Jη|m〉HH〈m|Jη|n〉H

×(δ(ω − (E (H)
m − E (H)

n )) + δ(ω + (E (H)
m − E (H)

n ))).

The contributions from (δσ1,η(ω))3 and (δσ1,η(ω))4 are exponentially small at temperatures
T 	 U . (δσ1,η(ω))1 contributes to the spectrum below the energy �U while (δσ1,η(ω))2

contributes above that energy. Thus, if the upper limit �µ of the integral of the real part of
the optical conductivity W (t,�µ) is set below U only the term (δσ1,η(ω))1 contributes and
the summations in formula (14) are restricted to states of the lower Hubbard band. If effects
related to correlated hopping are neglected, the current operator, the polarization operator and
the hopping term defined for the t JM may be obtained by substituting �P , �J and HhHM, defined
at the level of the HM, by projected operators P �P P , P �J P and P HhHM P = Hht J , which
have the same commutation relations (15) and (16) as �P , �J and HhHM. As we have already
mentioned, the projector P restricts the Hilbert space to states without doubly occupied sites.
We may conclude from the above discussion that the spectral weight W (t,�µ) with the cut-
off frequency �µ set below the charge transfer energy is proportional to the thermodynamic
average of the hopping term 〈Hht J 〉 in the t JM and that 〈Hht J 〉 represents the kinetic energy. If
the range of the integral in (3) covers also charge excitations with the energy �U , W (t,�µ) is
related to 〈HhHM〉. To order O(t2/U) it is the same as the average 〈H (t J )

hHM〉 and in that case the
latter represents the kinetic energy. The difference between both definitions has its origin in
(δσ1,η(ω))2. This contribution originates in virtual transitions to states with doubly occupied
sites and is related to the exchange energy 〈HJ 〉. That statement follows from the relation
H (t J )

hHM = Hht J + 2HJ . We have neglected the correlated hopping in the whole discussion. That
term does not change qualitatively the behaviour of the t JM. Experimental results indicate
that the weight W (t,�µ) is conserved for all T if �µ exceeds the gap energy. Therefore,
lowering of the kinetic energy in the superconducting state should be expected only in models
defined in the energy range below the charge transfer gap U .

The discrepancy between the lowering of the kinetic energy in the HM in the
superconducting state and conservation of W (T,�µ) at the transition to the superconducting
state in Bi-2212 indicates that a simple one-band model is not capable of describing the
physics of excitations across the gap. However, there exists strong experimental and theoretical
evidence [23] that the t JM model or a modification of it is a proper low-energy model and we
will analyse that model in the remaining part of this paper. Paradoxically, the relation between
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the HM and the t JM is, in this context, irrelevant. Later, we will merely refer to the HM to
demonstrate that it fails to represent correctly the physics in the energy range above the gap.

3. Kinetic energy in the spin-polaron model

As we have already mentioned, we analyse the behaviour of weakly doped AF at three levels:
at the level of the HM, for which the energy scale is U , at the level of the t JM, for which
the proper energy scale is t (or J in the limit of low doping), and at the level of the SPM, for
which the energy scale is J . Now, we concentrate on the t JM. We assume that short-range
AF correlations exist in the spin background. A moving hole frustrates the spin arrangement.
The contribution from the exchange term in the t JM to the energy increases if the short-range
AF order is locally frustrated. The kinetic energy in the t JM results in both repulsion and
attraction in the regime t > J . On the one hand, a second hole acts like a hard-core object
for the first one—this always results in a loss of kinetic energy, because the holes block each
other’s hopping. On the other hand, unlike a single hole which can propagate coherently in an
AF only by the action of the exchange term, a pair of holes can propagate by the hopping term
alone, which is more efficient. This kind of propagation will result in an attractive interaction
between the holes. Which mechanism dominates is a subtle question. Some answers to that
question have been given by means of the spin-polaron approach. For example, binding of
holes has been confirmed by variational calculations for two holes [24]. Many detailed results
obtained within the spin-polaron scenario have been verified by extensive comparisons with
results of numerical analyses including QMC [25], exact diagonalization (ED) [26, 27] and
density matrix renormalization group (DMRG) calculations [28].

As we have already mentioned, a line consisting of frustrated spins left by the moving
hole tends to confine the hole. That line acts on it like a string. Since t 
 J the probability
of a next hop is higher than for any process mediated by the exchange term. We may assume
in the lowest-order approximation that the trapped hole oscillates in the potential well formed
by strings which consist of frustrated spins. The spin-polaron wavefunction

|	i〉 =
∑
Pi

αl(Pi )|Pi 〉 (17)

represents the hole trapped in the potential well. The string state |Pi 〉 is obtained by the
hopping along a path Pi , without retreats, of a hole created at site i in the locally AF medium.
We find parameters αl(Pi ) by solving a Schrödinger equation for a trial Hamiltonian which, by
definition, neglects all processes that might give rise to the escape of the hole from the potential
well. The Néel state with some quantum fluctuations plays the role of the AF medium for the
moving hole. We also assume that amplitudes αl(Pi ) depend only on the length l(Pi ) of the
paths. The spin fluctuations which are present in the ground state of the quantum AF in two
dimensions are taken into account to lowest order [29].

At this stage of the calculation we analyse in the restricted Hilbert space the problem of a
hole in the AF background. That restricted space consists of states |Pi 〉 which may be obtained
by shifting a hole which has been initially created at the site i . That part of the calculation
is analogous to the analysis by Bulaevskii–Nagaev–Khomskii and Brinkman–Rice of a model
for non-retracing paths in a Néel background [30, 31]. Parameters αl(Pi ) are solutions of the
Schrödinger equation for a truncated version of the t JM. In the truncated Hamiltonian all
matrix elements which give rise to the escape of the hole from the potential well formed by
defects created by the moving hole have been omitted. Within that approximation we obtain
parameters αl(Pi ) practically by solving a problem of a single particle (hole) hopping in an
external potential on half of a chain. l(Pi ) which is the distance from the initial site i , labels
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i j k i j k
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i j i j

Figure 1. Graphical representation of the simplest processes which contribute to the effective
Hamiltonian written in the language of spin polarons.

the sites in that chain. The external potential represents the increase of the exchange energy
which is brought about by defects in the antiferromagnetic (AF) structure. These defects are
created by the hopping hole, which means that the value of the potential increases linearly with
the distance l(Pi ). |	i〉, which is constructed in this way, resembles a confined orbital state
with s-wave symmetry. Later we will derive a representation of the full t JM in the basis of
these orbital-like states. That representation will have a standard form applied in the second
quantization. In particular, an orbital-like state |	i〉 representing a trapped hole will be created
by a single fermionic creation operator h†

i .
A product of wavefunctions (17) represents two holes trapped in distant potential wells.

Such a product cannot be applied if potential wells trapping different holes overlap. Thus, for
two holes created at a pair of nearest-neighbour sites i , j , we define a localized spin bipolaron
as a combination of states which may be obtained by non-retraceable hopping of these holes:

|	i, j 〉 =
∑
Pi ,P j

αl(Pi ),l(P j )|Pi ,P j 〉. (18)

By solving a Schrödinger equation for two particles in a potential well we derive amplitudes
αl(Pi ),l(P j ). The basis consisting of (17) and (18) constitutes a low-energy shell of states. We
will represent and solve the t JM in that basis. We may apply this construction because the
eigenenergies of spin polarons (17) and (18) already contain the major portion of the total
energy related to incoherent motion of holes on the scale of t . Some of the polaron states are
not orthogonal. The nonorthogonality is weak and we will neglect it in this paper. The form of
the effective low-energy Hamiltonian is determined by processes which restore AF correlations
that are assumed to exist in the system, at least on a short-range scale. That Hamiltonian has
already been presented in a previous article [32]. In order to make the present discussion self-
sufficient we will now discuss three examples of processes which contribute to the effective
Hamiltonian. The sequence of figures 1(a)–(d) represents a process during which the hole
hops twice and creates two defects in the AF background. These defects are later annihilated
by the transversal part of the exchange term in the t JM. A wavy line denotes a frustrated link
for which the static, diagonal contribution to the exchange energy is higher than in the Néel
state. Figure 1(c) represents a string state |Pi〉 which is a component of the spin polaron state
|	i〉 at site i . The exchange term in the t JM couples that string state to the state in figure 1(d).
The latter state is a component of the polaron at site j . Such a sequence of events means, in
the spin polaron language, that the polaron is shifted by two lattice spacings from site i to site
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j and a term representing the hopping of that object will appear in the effective Hamiltonian.
That term gives rise to the propagation of a single polaron. We may analogously find the
remaining contributions to the SPM by analysing the coupling of spin-polaron wavefunctions
by the t JM. Figures 1(e)–(g) represent the motion of a hole pair. The defect created by the
right hole is later annihilated by the move of the left hole. The spin bipolaron is effectively
shifted by one lattice spacing from the pair of sites i, j to the pair of sites j, k. Motion of spin
bipolarons may also be mediated by the term in the Hamiltonian which flips antiparallel spins
at NN sites. Two defects in figure 1(h) have been created by independent single upward hops
of each hole. When they are annihilated, the hole pair and the bipolaron move upward by one
lattice spacing from the pair of sites i, j to the pair of sites m, n.

The whole calculation is restricted to processes which involve strings with length not
longer than 2 lattice spacings. That approximation needs some justification. By solving the
Schrödinger equation determining the shape of spin polarons we deduce that the weight of a
string state of length 3 for J/t = 0.33 is already smaller at least by one order of magnitude
than the weight of states representing bare holes created in the Néel state and drops faster
with increasing length. Thus, we immediately realize that the weight of the shortest strings
involved in a given process basically determines the order of magnitude of its amplitude which
may also be confirmed by an explicit evaluation. In addition, results of experiments with
neutron scattering performed for La2−x Srx CuO4 [33] suggest that the AF correlation length
in the cuprates follows the mean hole distance, which allows us to make an estimate that the
spin-polaron approach to pairing in weakly doped AF will provide reasonable results for the
doping parameter δ � 1/9 for which the AF correlation length is longer than the average
distance between the holes that form the spin bipolaron. We estimate that the latter parameter
is equal to about 2–3 distances between copper atoms. The applicability of the string approach
to the whole underdoped region, for example, for the doping parameter up to the value 1/4
starts to be questionable because at that value the AF correlation length is surely no higher
than twice the distance between copper atoms.

The full low-energy Hamiltonian HSPM:

HSPM − µNSPM = (E1 − µ)
∑

i

h†
i hi + h

∑
i,δ,δ′;δ′ �=−δ

h†
i+δ+δ′ hi

+ (E2/2 − E1 + u1)
∑
i,δ

h†
i h†

i+δhi+δhi + u2

∑
i,δ,δ′;δ′ �=−δ

h†
i h†

i+δ+δ′ hi+δ+δ′ hi

+ u3

∑
i,δ,δ′ ;δ′⊥δ

h†
i h†

i+δ+δ′ hi+δ+δ′ hi + u4

∑
i,δ,δ′ ,δ′′ ;δ′ �=−δ,δ′′ �=−δ′

h†
i h†

i+δ+δ′+δ′′ hi+δ+δ′+δ′′ hi

+ s1

∑
i,δ,δ′ ;δ′ �=−δ

h†
i+δ+δ′ h

†
i+δhi+δhi + s2

∑
i,δ,δ′ ,δ′′ ;δ′ �=−δ,δ′′ �=−δ′

h†
i+δ+δ′ h

†
i+δ+δ′+δ′′ hi+δhi

+ s3

∑
i,δ,δ′ ;δ′⊥δ

[(h†
i h†

i+δ+δ′ hi+2δhi + H.c.) + h†
i h†

i+δ+δ′ hi+δ−δ′ hi ]

+ s4

∑
i,δ,δ′ ,δ′′ ;δ′ �=−δ,δ′′ �=−δ′

(h†
i h†

i+δ+δ′+δ′′hi+δhi + H.c.) + s5

∑
i,δ,δ′ ;δ′⊥δ

h†
i h†

i+δ′ hi+δhi

+ s6

∑
i,δ,δ′ ,δ′′ ;δ′ �=δ,δ′′ �=−δ

(h†
i+δ+δ′′ h

†
i+δ′ hi+δhi + H.c.)

+ s7

∑
i,δ,δ′ ;δ′⊥δ

h†
i+δ+δ′ h

†
i+δ′ hi+δ (19)

is written in terms of operators creating (annihilating) a spin polaron at a site i , h†
i (hi ). The

operator h†
i represents a combination of the products of raising and lowering spin operators and
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an operator which annihilates the bare fermion defined for the t JM. These products create in
the Néel state a string state which may also be obtained by letting a hole created at a given site
hop in the AF background. Amplitudes αl(Pi ) with which these products appear in the definition
are obtained by solving a Schrödinger equation for the problem of a hole trapped in a potential
well formed by spin fluctuations. More details are found in a previous publication [32].
Parameters of this Hamiltonian are functions of amplitudes α and eigenenergies of the spin
polaron E1 and the bipolaron E2. NSPM denotes an operator which represents the number of
bare holes in the system. HSPM represents the Hamiltonian of the t JM reduced to the space
which spans polaron eigenstates with lowest energy:

HSPM = H (SPM)

ht J + H (SPM)
J . (20)

The term H (SPM)

ht J corresponds to the hopping term Hht J in the t JM and 〈H (SPM)

ht J 〉 gives the
kinetic energy for that model. The Hamiltonian HSPM also represents the low-energy states
of the Hamiltonian HHM. It consists of two terms representing the kinetic and the potential
energy of bare fermions in the HM:

HSPM = H (SPM)

hHM + H (SPM)
U . (21)

Here, H (SPM)

J = −H (SPM)

U is equivalent to the exchange term in the t JM and to the Coulomb
interaction in the HM multiplied by −1. This relation follows from an analogous formula
H (t J )

U = −HJ valid at the level of the t JM. In order to calculate the kinetic energy defined
either by the hopping term in the t JM or by the hopping term in the HM, we should identify the
operator H (SPM)

ht J . Knowing that operator we can find the kinetic energy in the HM by means
of the following relation:

H (SPM)

hHM = 2HSPM − H (SPM)

ht J , (22)

where H (SPM)

hHM represents in the SPM the hopping term HhHM in the HM.
In order to find H (SPM)

ht J , we select terms in HSPM which originate in the coupling of
spin polarons by the hopping term Hht J in the t JM. Hopping in the t JM contributes to
the eigenenergy of a spin polaron and a bipolaron. These contributions may be identified as
portions of the eigenenergies E (h)

1 and E (h)

2 , which are related to the motion of holes inside
potential wells:

E (h)

1 = 2zt
∑
µ=0

Pµ

0,0αµαµ+1 (23)

E (h)

2 = 2(z − 1)t
∑

µ=0,ν=0

Pµ

0,0 Pν
0,0(αµ,ναµ+1,ν + αµ,ναµ,ν+1), (24)

where z is the coordination number, Pµ
µ1,µ2

= (z − 2)(µ−µ1) for µ2 � µ � µ1 and
Pµ

µ1,µ2
= (z−1)(µ−µ2)(z−2)(µ2−µ1) for µ � µ2 � µ1. Pµ

µ1,µ2
is a number which represents the

unfolding of new paths. Since E (h)

1 and E (h)

2 contribute to the eigenenergies of polarons they
appear as the diagonal terms in the operator H (SPM)

ht J which, in the language of spin polarons,
represents hopping in the t JM. We have already discussed (the sequence of figures 1(a)–(d))
an important process which gives rise to off-diagonal terms in H (SPM)

ht J . This process is actually
related to the motion of a string formed by defected spins. The string connects two holes
which are attached to its ends. Hopping of these holes may give rise to an expansion of the
string at an endpoint and a shrinking at the other and finally to a move of the whole string. In
spin-polaron language this effect manifests itself as a coupling between wavefunctions of two
different bipolarons (pairs of polarons on NN sites) by the hopping term in the t JM. A term
which shifts the position of a bipolaron will appear in the effective operator H (SPM)

ht J .
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Figure 2. Graphical representation of two process which contribute to the operator representing
the kinetic energy.

Next, we present in slightly more detail two other examples of processes related to hopping
in the t JM. Let us consider figure 2(a) which depicts two holes that have been created in the AF
background. Figure 2(a) also represents a string state which contributes to the wavefunction
of two polarons occupying sites i and j . The lower hole starts to move, which gives rise to
the states in figures 2(b) and (c). These states are also components of the wavefunction for the
same polaron pair. If the hopping term is applied to the component represented by figure 2(c)
a state depicted in figure 2(d) is created. This state is a component of the wavefunction for
polarons representing two holes that have been initially created at two different sites i and
m shown in figure 2(e). We find that Hht J couples wavefunctions of two different pairs of
polarons. Thus, the process depicted in figures 2(a)–(e) shifts a polaron from site j to site m
if site i is also occupied by a spin polaron and the term −tα2α1α

2
0h†

mh†
i hi h j appears in the

operator H (SPM)

ht J . Indices of parameters α refer to the length of strings involved. The minus
sign appears in front of t because an exchange of holes takes place. Further motion of the hole
created at site j will not change the mechanism of the process that we have just discussed and
contributions from longer strings will appear in H (SPM)

ht J .
Figure 2(f) depicts a hole attached by a string to site j and a separate hole at site i . That

state has been created from the state depicted in figure 2(a) by two hops of the hole from site
j to site m. A process mediated by Hht J shifts the hole from site i to site n, removes a spin
defect at the latter site and effectively moves a polaron from site i to site m. The new state may
be interpreted as a string attached to site j and a hole at site m. That process also contributes
to the operator H (SPM)

ht J which represents within the low-energy states the hopping term in the
t JM. By collecting all contributions from different processes we can derive an approximate
formula for H (SPM)

ht J :

H (SPM)

ht J = E (h)
1

∑
i

h†
i hi + (E (h)

2 /2 − E (h)
1 )

∑
i,δ

h†
i h†

i+δhi+δhi

+ u(h)

2

∑
i,δ,δ′ ;δ′ �=−δ

h†
i h†

i+δ+δ′ hi+δ+δ′ hi + u(h)

3

∑
i,δ,δ′ ;δ′⊥δ

h†
i h†

i+δ+δ′ hi+δ+δ′ hi

+ s(h)

1

∑
i,δ,δ′;δ′ �=−δ

h†
i+δ+δ′ h

†
i+δhi+δhi + s(h)

2

∑
i,δ,δ′,δ′′ ;δ′ �=−δ,δ′′ �=−δ′

h†
i+δ+δ′ h

†
i+δ+δ′+δ′′hi+δhi

+ s(h)

3

∑
i,δ,δ′;δ′⊥δ

(h†
i h†

i+δ+δ′ hi+2δhi + H.c.) (25)



6610 P Wróbel et al

where the parameters representing hopping in the t JM, u(h)

2 , u(h)

3 , s(h)

1 , s(h)

2 and s(h)

3 are

u(h)

2 = E (h)

1 P{ (0,0)

(2,0)
}{ (0,0)

(2,0)
}} + PH

{ (0,0)

(2,0)
}{ (0,0)

(2,0)
}/2 (26)

u(h)

3 = E (h)

1 R{ (0,0)

(1,1)
}{ (0,0)

(1,1)
} + RH

{ (0,0)

(1,1)
}{ (0,0)

(1,1)
} (27)

s(h)

1 = E (h)

2 C{ (2,0)

(1,0)
}{ (0,0)

(1,0)
} + CH

{ (2,0)

(1,0)
}{ (0,0)

(1,0)
} (28)

s(h)
2 = E (h)

2 C{ (2,0)

(3,0)
}{ (0,0)

(1,0)
} + CH

{ (2,0)

(3,0)
}{ (0,0)

(1,0)
} (29)

s(h)

3 = 2E (h)

1 S{ (0,0)

(1,1)
}{ (0,0)

(2,0)
} + SH

{ (0,0)

(1,1)
}{ (0,0)

(2,0)
}. (30)

Amplitudes P , PH, R, RH, C , CH, S and SH are related to different categories of processes
have been defined in [32]. It is clear that we have derived the operator H (SPM)

ht J with the same
accuracy which has been applied in [32] to the derivation of the full Hamiltonian (19).

4. Difference of the kinetic energy between the superconducting state and the normal
state

By applying the standard mean-field procedure to the operator H (SPM)

ht J we deduce the difference
of the kinetic energy in the t JM between the SC and the normal state:

δEht J

N

∣∣∣∣
T =0

= 1

N

∑
k

{
E (h)

1

2

(
1 − ξk

Ek

)
− [(E (h)

2 /2 − E (h)

1 ) − s(h)

1 + s(h)

2 ]D(1,0)
k �ex �k Ek

}

− 4[(E (h)
2 /2 − E (h)

1 ) − s(h)
1 + s(h)

2 ]�2
ex

, (31)

where ξk and Ek are quasiparticle energies in the normal and the SC state:

ξk = E1 + h(S(2,0)
k + 2S(1,1)

k ) − µ, (32)

Ek =
√

ξ2
k + �2

k. (33)

Here �x represents an anomalous Green function:

�x = 〈Tτ hi+x(τ + 0+)hi (τ )〉, (34)

and i belongs to the spin-up AF sublattice. The gap function is strongly anisotropic:

�k = d(1,0)
k �ex + d(2,1)

k �2ex +ey + d(3,0)
k �3ex , (35)

d(1,0)
k = (2u1 + 4u4 − 2s1 + 2s2 − 8s4 − 4s5 + 8s6 + 4s7)D(1,0)

k

+ (2s4 + 2s6)D(2,1)
k + (2s4 + 2s6)D(3,0)

k , (36)

d(2,1)
k = (4s4 + 4s6)D(1,0)

k + 6u4 D(2,1)
k , (37)

d(3,0)

k = (2s4 + 2s6)D(1,0)

k + 2u4 D(3,0)

k , (38)

where

D(1,0)
k = 2 cos(kx) − 2 cos(ky), (39)

D(2,1)
k = 2 cos(2kx + ky) + 2 cos(2kx − ky) − 2 cos(kx + 2ky) − 2 cos(kx − 2ky), (40)

D(3,0)
k = 2 cos(3kx) − 2 cos(3ky), (41)

S(2,0)
k = 2 cos(2kx) + 2 cos(2ky) (42)

S(1,1)
k = 2 cos(kx + ky) + 2 cos(kx − ky). (43)
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Figure 3. The differences between the total (full curve), kinetic (dotted curve) and potential (chain
curve) energy in the superconducting and normal states defined at the level of the t J M at T = 0.

The differences between the total (full curve), kinetic (dotted curve) and potential (chain curve)
energy in the SC state and in the normal state at T = 0 are shown in figure 3 for J/t = 0.33.
The plot is restricted to the region of low doping. We believe that our approach may be applied
there. It turns out that, in the t JM, both the kinetic energy and the potential energy decrease.
We have used in the calculation the same numerical parameters defining the SPM (19) for the
whole low doping range. We know from the analysis of the binding energy of holes that the
strength of the pairing force is already overestimated in the system at half-filling, if effects
related to quantum spin fluctuations in the ground state of the quantum AF in two dimensions
are taken into account approximately [29]. We have applied the same simplified approximation
in the calculation presented in this paper. If we ascribe the pairing in doped AF to the presence
of AF correlations, we must also draw the conclusion that the strength of the pairing force
between spin polarons weakens with doping because the correlation length becomes shorter.
We have neglected this effect in the calculation of the energy change. The hopping parameter
t for the cuprates is a fraction of an electronvolt. Having in mind the overestimation of the
pairing force in our calculation we see that our assessment of the order of magnitude, by
which the kinetic energy is lowered in the SC state, roughly agrees with the quantity ∼1 meV
suggested by experiment [1, 3].

We proceed now to assess the difference of the kinetic energy in the HM between the SC
state and the normal state. We evaluate the average of the operator H (SPM)

hHM = 2HSPM − H (SPM)

ht J :

δEhHM

N

∣∣∣∣
T =0

= 1

N

∑
k

{
|ξk| − Ek − E (h)

1

2

(
1 − ξk

Ek

)

+ [(E (h)

2 /2 − E (h)

1 ) − s(h)

1 + s(h)

2 ]D(1,0)
k �ex �k Ek

}

− {[8u1 + 16u4 − 8s1 + 8s2 − 32s4 − 16s5 + 32s6 + 16s7

− 4((E (h)
2 /2 − E (h)

1 ) − s(h)
1 + s(h)

2 )]�2
ex

+ 48u4�
2
2ex +ey

+ 8u4�
2
3ex

+ (32s4 + 32s6)�ex �2ex +ey

+ (16s4 + 16s6)�ex �3ex }. (44)

Shown in figure 4 are the differences between the total (full curve), kinetic (dotted curve)
and potential (chain curve) energies in the HM between the SC state and the normal state
at T = 0 for J/t = 0.33. We notice that the kinetic energy in the HM decreases, while the
potential energy increases. Our conclusions agree with results of a recent calculation performed
for the HM in the low doping limit by means of the dynamical cluster approximation [34].
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Figure 4. The differences between the total (full curve), kinetic (dotted curve) and potential (chain
curve) energies in the superconducting and normal states defined at the level of the HM at T = 0.
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Figure 5. The differences between the total (full curve), kinetic (dotted curve) and potential (chain
curve) energies in the superconducting and normal states defined for the dressed particles (spin
polarons) at T = 0.

Experimental results do not indicate a strong change of W (T <,�µ) at T = Tc if the cut-off
frequency �µ is set above the charge excitation energy [3]. This observation does not agree
with our result, indicating that the kinetic energy is lowered in the HM. We conclude that
experiments suggest that this model is not sufficient to describe the physics of cuprates in the
energy range above the charge excitation energy U . The failure of the HM in this case is, to
some extent, obvious because at such a high energy scale inter-band and multi-band effects
may become important.

For comparison, we now calculate the change of the kinetic energy in the Hamiltonian (19).
We define the kinetic energy by the term in the Hamiltonian

HhSPM = h
∑

i,δ,δ′;δ′ �=−δ

h†
i+δ+δ′ hi , (45)

which represents the hopping of spin polarons. The change in the kinetic energy is then of the
standard BCS form:

δEhSPM =
∑

k

(h/2)(S(2,0)
k + 2S(1,1)

k )

(
1 − ξk

Ek

)
. (46)

The increase of this quantity in the SC state which we notice in figure 5 may be attributed to
a smearing of the momentum distribution of spin polarons.
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5. Summary and conclusions

The spectral weight W (t,�µ) defined by equation (3) determines the kinetic energy within the
Hubbard model only when �µ exceeds the energy U � 2 eV, i.e. the charge transfer gap. As we
have discussed above, in underdoped Bi-2212 equation (4) has to be replaced by equation (5).
On the other hand, W (t,�µ) differs for T > Tc and T < Tc when �µ is considerably less
than U , i.e. when �µ < 0.6 eV. In that case W (T,�µ) can be used to determine the kinetic
energy of the t JM. For J = 0.1 eV and J/t = 0.33 we find a decrease of the kinetic energy
within that model when the system is superconducting. At T = 0 this decrease is of the order
of 1–2 meV per site, which is larger by approximately a factor of 1.5–2 than the experimental
findings. This difference may result from the fact that the lowering of the AF correlations with
increasing doping is not taken into account in the theory. In addition, the relation between
the measured change in W (T,�µ) and the calculated change of the kinetic energy in the t JM
which follows from (2) is already a crude approximation. We, like [34], see also for the HM
a decrease of the kinetic energy due to superconductivity. But the relation (5) found from
experiments would suggest that the kinetic energy remains unaffected in the superconducting
state. This discrepancy suggests that modifications of the simple HM are required in order to
explain the experimental findings as regards the spectral weight. In underdoped Bi-2212, as
well as in the t JM, the difference in the sum of the kinetic and the exchange energy between
the normal and superconducting states is of the order of 2 meV [1, 3, 35, 37, 36] per site. This
is larger, by one order of magnitude, than the 0.1 meV per site which is obtained from the
calorimetric measurements [38]. The t JM, as well as the HM, do not contain the long-range
part of the Coulomb interactions. Based on an analysis of the dielectric function it has been
suggested that the Coulomb energy increases when the system becomes superconducting [39].
This would imply that the decrease in the short-range or exchange part is compensated by an
increase of the long-range part of the Coulomb interaction when superconductivity sets in.

It has been suggested that the violation of (4) may be attributed to the transition between
an unconventional non-Fermi-liquid normal state with the frequency-dependent scattering rate
and a more conventional SC state [40, 8, 39]. The authors of these suggestions deduce the
frequency dependence of the scattering rate from fits to ARPES data at the (�, 0) point. The
main argument is that, at the transition from the non-standard normal state to the SC state,
a deformation of the electron momentum density profile takes place. The weight is shifted
to states with lower momentum during that deformation. This scenario is actually realized in
weakly doped AF as was discussed some time ago in the context of the Fermi surface evolution
and binding in these systems [41, 42]. The rough picture may be described as follows. The
electron momentum density in the unpaired state has an overall shape which resembles the
electron momentum density of weakly interacting fermions on the square lattice. That form
of the distribution has its origin in the fast incoherent hopping of holes trapped in a potential
well. Dips in the distributions in the regions near points (±π/2,±π/2) are related to a bigger
concentration of holes. Points (±π/2,±π/2) are minima of the energy dispersion of the spin
polaron, which is a quasiparticle representing a propagating hole. These minima have been
experimentally observed in an undoped system by means of angle-resolved photoemission
spectroscopy (ARPES) [12]. A recent ARPES study of a metal to insulator transition in
Ca2−x Nax CuO2Cl2 demonstrates that the rigid band picture, in which holes populate pockets
about (π/2, π/2), is true for some underdoped cuprates [11]. The rigid band is represented
in our calculation by the quasiparticle dispersion in the normal state of the SPM. The spin-
polaron propagation is not directly related to hopping of electrons between NN sites. That
propagation is rather mediated by the exchange interaction which removes defects from the
spin background. Pairing of holes is, to a much greater extent, mediated by hopping between
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Figure 6. Electron momentum distribution along a line in the k space which crosses a region
populated by spin polarons.

Figure 7. Electron momentum distribution along a line in the k space which does not cross a region
populated by spin polarons.

NN sites. Dips in the electron momentum distribution become shallower, the weight is shifted
toward lower momenta and the kinetic energy decreases in the paired state. The change of
the momentum distribution plotted as a function of the band energy εk for a noninteracting
system has been schematically presented in figures 6 and 7. Full curves represent the normal,
while chain curves the SC state. Discontinuities in momentum distribution which form in the
normal state are seen only along certain directions. They are much more pronounced near the
zone centre. The weight is shifted in the SC state to the low-momentum region. This scenario
takes into account the presence of quasiparticles in the normal state in some directions in the
momentum and in this aspect is different from the suggestion that lowering of the kinetic
energy may occur at the transition from a totally incoherent normal state to the SC state.

Binding of holes in the AF background in the state with d-wave symmetry has been found
by means of the ED [43–47] of small clusters. These results also indicate that lowering of the
kinetic energy is an important factor in that process. Binding of holes has also been found by
means of the spin-polaron approach [48, 29, 24, 13].

Hopping of hole pairs between forming stripes will also bring about a lowering of the
kinetic energy [49, 50] in a hypothetical superconducting state. The spin polaron scenario is
also a suitable approach to discuss the dynamics of holes in the striped background [13].

In a model of hole superconductivity pairing and lowering of the kinetic energy take place
simultaneously [51–53]. Electrons hop in this model in a correlated manner. Its mechanism
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is effective only when the band is almost filled [54]. In contrast we deal in our scenario with
a band which is nearly half-filled, i.e. close to the metal–insulator transition.

Lowering of the kinetic energy by the onset of SC has also been suggested within the RVB
scenario [55, 56].

In a phenomenological model of a non-Fermi-liquid state with a frequency-dependent
scattering rate a violation of the sum rule (4) has also been found [8].

The decrease of the kinetic energy at Tc has also been predicted in a scenario for a
superconductor where there is a separation of the pairing amplitude formation from the phase
coherence transition [57]. This scenario predicts the opening of a gap at low frequencies above
Tc. Such an effect is not seen in the cuprates when the real part of the in-plane conductivity is
measured [2].

The AF spin-polaron approach is based on the assumption of short-range AF correlations.
An alternative would be to take them into account by a bond-ordered state [58].

Finally, we should point out that we have completely neglected the effects of phonons.
According to Shen and collaborators, these effects are seen in the results of ARPES
measurements [59].
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